Nitrogen transformations modeling in subsurface-flow constructed wetlands

Subsurface-flow constructed wetlands (CWs) wastewater treatment typically results in satisfactory organics removal. However, the removal of nutrients, particularly nitrogen, is often unreliable, and typically less than desired, and nitrogen transformations in wetlands systems are not well-understood...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 77(2005), 3 vom: 08. Mai, Seite 246-58
1. Verfasser: Liu, Wenxin (VerfasserIn)
Weitere Verfasser: Dahab, Mohamed F, Surampalli, Rao Y
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Nitrogen N762921K75
Beschreibung
Zusammenfassung:Subsurface-flow constructed wetlands (CWs) wastewater treatment typically results in satisfactory organics removal. However, the removal of nutrients, particularly nitrogen, is often unreliable, and typically less than desired, and nitrogen transformations in wetlands systems are not well-understood. The principal objective of this study was to establish a basis for quantification of nitrogen transformations through subsurface flow CW systems. Actual performance data from a full-scale facility located near Lincoln, Nebraska, were used to calibrate a proposed nitrogen transformations model, which, in turn, was used to replicate and predict the wetlands performance. To realize this objective, a compartmental analysis technique, which uses a set of differential equations and nonlinear optimization numerical methods, was used for solving nitrogen transformation rates and for predicting wetland performance. The model satisfactorily reproduced the mean effluent concentrations for organic nitrogen, ammonium-nitrogen, and nitrate-nitrogen, but with lesser accuracy with respect to peak high and low effluent concentrations. Nitrogen mass balance in the wetland was used to identify likely nitrogen transformation pathways. Generally, it was found that approximately one-third of the influent nitrogen mass was removed through nitrification and denitrification, one-third was removed through vegetative assimilation, and the remainder was discharged in the wetland effluent
Beschreibung:Date Completed 13.09.2005
Date Revised 22.09.2019
published: Print
Citation Status MEDLINE
ISSN:1554-7531