|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM155934686 |
003 |
DE-627 |
005 |
20231223073148.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0520.xml
|
035 |
|
|
|a (DE-627)NLM155934686
|
035 |
|
|
|a (NLM)15952845
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Deng, Shubo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Fungal biomass with grafted poly(acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.06.2006
|
500 |
|
|
|a Date Revised 24.11.2016
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The biomass of Penicillium chrysogenum was modified by graft polymerization of acrylic acid (AAc) on the surface of ozone-pretreated biomass. The sorption capacity for copper and cadmium increased significantly as a large number of carboxyl groups were present on the biomass surface, especially when the carboxylic acid group was converted to carboxylate ions using NaOH. When modeled using the Langmuir isotherm, the sorption capacities were 1.70 and 1.87 mmol g(-1) for copper and cadmium, respectively. The loaded biosorbent was regenerated using HCl solution and used repeatedly over five cycles with little loss of uptake capacity beyond the second cycle. The sorption of the two metals was time-dependent, and the kinetics fitted the pseudo-second-order equation well. The Freundlich, Langmuir, Temkin, and Dubinin-Redushkevich isotherms were used to model the metal sorption isotherms, and the thermodynamic parameters calculated show that the sorption was spontaneous and endothermic under the condition applied and that the biomass has similar sorption affinities for the two metals. Fourier transform infrared and X-ray photoelectron spectroscopy reveal that carboxyl, amide, and hydroxyl groups on the biomass surface were involved in the sorption of copper and cadmium and ion exchange and complexation dominated the sorption process
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Acrylic Resins
|2 NLM
|
650 |
|
7 |
|a Cadmium
|2 NLM
|
650 |
|
7 |
|a 00BH33GNGH
|2 NLM
|
650 |
|
7 |
|a carbopol 940
|2 NLM
|
650 |
|
7 |
|a 4Q93RCW27E
|2 NLM
|
650 |
|
7 |
|a Copper
|2 NLM
|
650 |
|
7 |
|a 789U1901C5
|2 NLM
|
700 |
1 |
|
|a Ting, Yen Peng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 21(2005), 13 vom: 21. Juni, Seite 5940-8
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:21
|g year:2005
|g number:13
|g day:21
|g month:06
|g pages:5940-8
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 21
|j 2005
|e 13
|b 21
|c 06
|h 5940-8
|