A theoretical and experimental analysis of linear combiners for multiple classifier systems

In this paper, a theoretical and experimental analysis of linear combiners for multiple classifier systems is presented. Although linear combiners are the most frequently used combining rules, many important issues related to their operation for pattern classification tasks lack a theoretical basis....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 27(2005), 6 vom: 10. Juni, Seite 942-56
1. Verfasser: Fumera, Giorgio (VerfasserIn)
Weitere Verfasser: Roli, Fabio
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article Validation Study
LEADER 01000caa a22002652 4500
001 NLM155846388
003 DE-627
005 20250206111452.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0520.xml 
035 |a (DE-627)NLM155846388 
035 |a (NLM)15943425 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fumera, Giorgio  |e verfasserin  |4 aut 
245 1 2 |a A theoretical and experimental analysis of linear combiners for multiple classifier systems 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.07.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, a theoretical and experimental analysis of linear combiners for multiple classifier systems is presented. Although linear combiners are the most frequently used combining rules, many important issues related to their operation for pattern classification tasks lack a theoretical basis. After a critical review of the framework developed in works by Tumer and Ghosh on which our analysis is based, we focus on the simplest and most widely used implementation of linear combiners, which consists of assigning a nonnegative weight to each individual classifier. Moreover, we consider the ideal performance of this combining rule, i.e., that achievable when the optimal values of the weights are used. We do not consider the problem of weights estimation, which has been addressed in the literature. Our theoretical analysis shows how the performance of linear combiners, in terms of misclassification probability, depends on the performance of individual classifiers, and on the correlation between their outputs. In particular, we evaluate the ideal performance improvement that can be achieved using the weighted average over the simple average combining rule and investigate in what way it depends on the individual classifiers. Experimental results on real data sets show that the behavior of linear combiners agrees with the predictions of our analytical model. Finally, we discuss the contribution to the state of the art and the practical relevance of our theoretical and experimental analysis of linear combiners for multiple classifier systems 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Validation Study 
700 1 |a Roli, Fabio  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 27(2005), 6 vom: 10. Juni, Seite 942-56  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:6  |g day:10  |g month:06  |g pages:942-56 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 6  |b 10  |c 06  |h 942-56