|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM155545558 |
003 |
DE-627 |
005 |
20231223072351.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0519.xml
|
035 |
|
|
|a (DE-627)NLM155545558
|
035 |
|
|
|a (NLM)15911558
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Wissuwa, Matthias
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Is root growth under phosphorus deficiency affected by source or sink limitations?
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.08.2005
|
500 |
|
|
|a Date Revised 19.11.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Reduced net photosynthesis (Pn) and decreasing shoot and root biomass are typical effects of phosphorus deficiency in plants. Lower biomass accumulation could be the result of reduced Pn (source limitation), but may also be due to direct negative effects of low P availability on growth (sink limitation). Because of the principal importance of root growth for P uptake, this study specifically examined the question whether source or sink limitations were responsible for reduced root growth rates under P deficiency. Rice plants were grown in nutrient solutions with four levels of P supply and at two light treatments and the effect of Pxlight treatments on growth and carbohydrate distribution was observed. Plants had up to 70% higher Pn when grown with natural (high) light compared with low light. Higher Pn, however, did not lead to additional growth under P deficiency, suggesting that assimilate supply from source leaves to roots was not a limiting factor under P deficiency. This was supported by observations that root starch concentrations increased in P-deficient roots. The comparison of two genotypes with different tolerance to P deficiency showed that the more tolerant one preferentially distributed P to roots where the additional P stimulated root growth and, ultimately, P uptake. The results therefore suggest that source limitation is of little importance under P deficiency. Even at highly sub-optimal tissue P concentrations of below 0.7 mg P g(-1) dry weight, plants were able to produce enough assimilates to sustain growth rates that were directly limited by low P availability
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Phosphorus
|2 NLM
|
650 |
|
7 |
|a 27YLU75U4W
|2 NLM
|
650 |
|
7 |
|a Carbon
|2 NLM
|
650 |
|
7 |
|a 7440-44-0
|2 NLM
|
650 |
|
7 |
|a Starch
|2 NLM
|
650 |
|
7 |
|a 9005-25-8
|2 NLM
|
700 |
1 |
|
|a Gamat, Gloria
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ismail, Abdelbagi M
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 56(2005), 417 vom: 28. Juli, Seite 1943-50
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:56
|g year:2005
|g number:417
|g day:28
|g month:07
|g pages:1943-50
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 56
|j 2005
|e 417
|b 28
|c 07
|h 1943-50
|