Surface ordering of a perfluorinated, self-assembled, dendrimer on a water subphase

We have investigated the surface ordering of a synthetic, asymmetric, fan-shaped dendrimer containing a carboxyl core and perfluorinated tails which was obtained by the esterification of the intermediary. X-ray diffraction patterns and transmission electron microscopy (TEM) images show the molecules...

Description complète

Détails bibliographiques
Publié dans:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 21(2005), 11 vom: 24. Mai, Seite 4989-95
Auteur principal: Lee, Su Rim (Auteur)
Autres auteurs: Yoon, Dong Ki, Park, Sang-Hyun, Lee, Eun Ho, Kim, Yun Ho, Stenger, Patrick, Zasadzinski, Joseph A, Jung, Hee-Tae
Format: Article
Langue:English
Publié: 2005
Accès à la collection:Langmuir : the ACS journal of surfaces and colloids
Sujets:Journal Article
Description
Résumé:We have investigated the surface ordering of a synthetic, asymmetric, fan-shaped dendrimer containing a carboxyl core and perfluorinated tails which was obtained by the esterification of the intermediary. X-ray diffraction patterns and transmission electron microscopy (TEM) images show the molecules self-assemble into a hexagonal, cylindrical mesophase. Surface pressure-area isotherms and Brewster angle microscopy measurements show the molecule forms a stable monolayer at the air-water interface with a single phase transition. As a condensed monolayer, the perfluorinated tails are well-packed with hexagonal symmetry with (10) spacing of approximately 0.5 nm from molecular-scale atomic force microscopy (AFM) images. Such dense molecular-scale packing has not been observed in other dendritic molecules thus far. Compared to the case of conventional dendritic molecules with alkyl tails, these molecules occupy a much smaller molecular area due to the strong microphase separation between the carboxylic core and perfluorinated tails at the air-water interface. After monolayer collapse, the irregular islands with terrace morphology are observed in contrast with conventional alkyl-terminated self-assembled dendritic molecules where irregular islands do not appear. The interfacial and internal structure of every terrace shows planar columnar morphology from AFM and TEM imaging. From these results, we discuss the stability of perfluorinated, self-assembled dendrimers on water, as well as how to generate planar morphology on a hydrophilic surface
Description:Date Completed 14.06.2006
Date Revised 17.05.2005
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0743-7463