Aggregate formation of binary nonionic surfactant mixtures on hydrophilic surfaces

Adsorption of surfactant mixtures on hydrophilic solid surfaces is of considerable theoretical and practical importance. Cooperative adsorption of nonionic surfactant mixtures of nonyl phenol ethoxylated decyl ether (NP-10) and n-dodecyl-beta-d-maltoside (DM) on silica and alumina was investigated i...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 11 vom: 24. Mai, Seite 4868-73
1. Verfasser: Zhang, Rui (VerfasserIn)
Weitere Verfasser: Somasundaran, P
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Adsorption of surfactant mixtures on hydrophilic solid surfaces is of considerable theoretical and practical importance. Cooperative adsorption of nonionic surfactant mixtures of nonyl phenol ethoxylated decyl ether (NP-10) and n-dodecyl-beta-d-maltoside (DM) on silica and alumina was investigated in this study with a view to elucidate the nanostructures of their aggregates. In the mixed system, DM is identified to be the "active" component and NP-10 is the "passive" one for the process of adsorption on alumina, while their roles are reversed for silica. The difference in the adsorptive interactions of the surfactants with the above minerals is attributed to the differences in the molecular structures of the surfactants. To better understand the interaction between surfactants at solid/solution interface from a molecular structure point of view, the nanostructures of mixed surface aggregates have been quantitatively predicted for the first time using a modified packing parameter: the structures are spherical or cylindrical on silica and those on alumina undergo a spherical-to-cylindrical-to-bilayer transition with the addition of the active component. This work offers a new way for developing of structure-performance relationships
Beschreibung:Date Completed 14.06.2006
Date Revised 17.05.2005
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827