Quartz crystal microbalance (QCM) in high-pressure carbon dioxide (CO2) : experimental aspects of QCM theory and CO2 adsorption

The quartz crystal microbalance (QCM) technique has been developed into a powerful tool for the study of solid-fluid interfaces. This study focuses on the applications of QCM in high-pressure carbon dioxide (CO2) systems. Frequency responses of six QCM crystals with different electrode materials (si...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 9 vom: 27. Apr., Seite 3665-73
1. Verfasser: Wu, You-Ting (VerfasserIn)
Weitere Verfasser: Akoto-Ampaw, Paa-Joe, Elbaccouch, Mohamed, Hurrey, Michael L, Wallen, Scott L, Grant, Christine S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM155201190
003 DE-627
005 20231223071621.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0517.xml 
035 |a (DE-627)NLM155201190 
035 |a (NLM)15875397 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, You-Ting  |e verfasserin  |4 aut 
245 1 0 |a Quartz crystal microbalance (QCM) in high-pressure carbon dioxide (CO2)  |b experimental aspects of QCM theory and CO2 adsorption 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 09.02.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The quartz crystal microbalance (QCM) technique has been developed into a powerful tool for the study of solid-fluid interfaces. This study focuses on the applications of QCM in high-pressure carbon dioxide (CO2) systems. Frequency responses of six QCM crystals with different electrode materials (silver or gold) and roughness values were determined in helium, nitrogen, and carbon dioxide at 35-40 degrees C and at elevated pressures up to 3200 psi. The goal is to experimentally examine the applicability of the traditional QCM theory in high-pressure systems and determine the adsorption of CO2 on the metal surfaces. A new QCM calculation approach was formulated to consider the surface roughness contribution to the frequency shift. It was found that the frequency-roughness correlation factor, Cr, in the new model was critical to the accurate calculation of mass changes on the crystal surface. Experiments and calculations demonstrated that the adsorption (or condensation) of gaseous and supercritical CO2 onto the silver and gold surfaces was as high as 3.6 microg cm(-2) at 40 degrees C when the CO2 densities are lower than 0.85 g cm(-3). The utilization of QCM crystals with different roughness in determining the adsorption of CO2 is also discussed 
650 4 |a Journal Article 
700 1 |a Akoto-Ampaw, Paa-Joe  |e verfasserin  |4 aut 
700 1 |a Elbaccouch, Mohamed  |e verfasserin  |4 aut 
700 1 |a Hurrey, Michael L  |e verfasserin  |4 aut 
700 1 |a Wallen, Scott L  |e verfasserin  |4 aut 
700 1 |a Grant, Christine S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 20(2004), 9 vom: 27. Apr., Seite 3665-73  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:20  |g year:2004  |g number:9  |g day:27  |g month:04  |g pages:3665-73 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 20  |j 2004  |e 9  |b 27  |c 04  |h 3665-73