Expression patterns of TEL genes in Poaceae suggest a conserved association with cell differentiation

Poaceae species present a conserved distichous phyllotaxy (leaf position along the stem) and share common properties with respect to leaf initiation. The goal of this work was to determine if these common traits imply common genes. Therefore, homologues of the maize TERMINAL EAR1 gene in Poaceae wer...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 56(2005), 416 vom: 14. Juni, Seite 1605-14
1. Verfasser: Paquet, Nicolas (VerfasserIn)
Weitere Verfasser: Bernadet, Marie, Morin, Halima, Traas, Jan, Dron, Michel, Charon, Celine
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Plant Proteins RNA-Binding Proteins terminal ear 1 protein, Zea mays
Beschreibung
Zusammenfassung:Poaceae species present a conserved distichous phyllotaxy (leaf position along the stem) and share common properties with respect to leaf initiation. The goal of this work was to determine if these common traits imply common genes. Therefore, homologues of the maize TERMINAL EAR1 gene in Poaceae were studied. This gene encodes an RNA-binding motif (RRM) protein, that is suggested to regulate leaf initiation. Using degenerate primers, one unique tel (terminal ear1-like) gene from seven Poaceae members, covering almost all the phylogenetic tree of the family, was identified by PCR. These genes present a very high degree of similarity, a much conserved exon-intron structure, and the three RRMs and TEL characteristic motifs. The evolution of tel sequences in Poaceae strongly correlates with the known phylogenetic tree of this family. RT-PCR gene expression analyses show conserved tel expression in the shoot apex in all species, suggesting functional orthology between these genes. In addition, in situ hybridization experiments with specific antisense probes show tel transcript accumulation in all differentiating cells of the leaf, from the recruitment of leaf founder cells to leaf margins cells. Tel expression is not restricted to initiating leaves as it is also found in pro-vascular tissues, root meristems, and immature inflorescences. Therefore, these results suggest that TEL is not only associated with leaf initiation but more generally with cell differentiation in Poaceae
Beschreibung:Date Completed 07.07.2005
Date Revised 18.11.2010
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431