Effects of molecular siting and adsorbent heterogeneity on the ideality of adsorption equilibria

The ideal adsorbed solution (IAS) theory is the benchmark for the prediction of mixed-gas adsorption equilibria from pure-component isotherms. In this work, we use atomistic grand canonical Monte Carlo simulations to test the effects of molecular siting and adsorbent energetic heterogeneity on the a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 6 vom: 16. März, Seite 2489-97
1. Verfasser: Murthi, Manohar (VerfasserIn)
Weitere Verfasser: Snurr, Randall Q
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM15485252X
003 DE-627
005 20231223070856.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0516.xml 
035 |a (DE-627)NLM15485252X 
035 |a (NLM)15835715 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Murthi, Manohar  |e verfasserin  |4 aut 
245 1 0 |a Effects of molecular siting and adsorbent heterogeneity on the ideality of adsorption equilibria 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.12.2005 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The ideal adsorbed solution (IAS) theory is the benchmark for the prediction of mixed-gas adsorption equilibria from pure-component isotherms. In this work, we use atomistic grand canonical Monte Carlo simulations to test the effects of molecular siting and adsorbent energetic heterogeneity on the applicability of the IAS theory. Pure-component isotherms generated by atomistic simulation are used to predict binary isobaric isotherms using the IAS theory. These predicted isotherms are compared with those obtained by a full atomistic simulation of the binary mixture. Binary mixtures of argon, methane, and CF4 in silicalite are found to obey IAS theory, while benzene/methane and cyclohexane/methane in silicalite are nonideal. The mixture of argon and CF4 is ideal despite the large difference in the sizes of the two species. This contradicts previous hypotheses in the literature, which state that mixtures of species of unequal size do not adsorb ideally. The nonideal behavior of the benzene/methane and cyclohexane/methane systems occurs because of adsorbent heterogeneity in these systems, which depends on both sorbent and sorbate. In addition, we use a lattice gas model with parameters derived from atomistic simulation to demonstrate analytically that a sufficiently energetically heterogeneous adsorbent will result in the breakdown of IAS theory even in the absence of interactions between sorbates 
650 4 |a Journal Article 
700 1 |a Snurr, Randall Q  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 20(2004), 6 vom: 16. März, Seite 2489-97  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:20  |g year:2004  |g number:6  |g day:16  |g month:03  |g pages:2489-97 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 20  |j 2004  |e 6  |b 16  |c 03  |h 2489-97