Roughness-induced acoustic second-harmonic generation during electrochemical metal deposition on the quartz-crystal microbalance
This paper reports on the relation between the surface roughness and emission of compressional waves from the surface of an electrochemical quartz-crystal microbalance. The detection of the compressional waves took place with an ultrasonic microphone and the quartz crystal itself. As a model process...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 6 vom: 16. März, Seite 2356-60 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | This paper reports on the relation between the surface roughness and emission of compressional waves from the surface of an electrochemical quartz-crystal microbalance. The detection of the compressional waves took place with an ultrasonic microphone and the quartz crystal itself. As a model process, the electrochemical deposition of copper from an acidic copper sulfate solution has been chosen. For this system, the roughness of the layer can be tuned via the current density. Roughness may be a source of the longitudinal waves at twice the frequency of the exciting shear wave (acoustic second-harmonic generation, ASHG) if the flow profile above the quartz-crystal surface is not entirely laminar. Slight deviations from the laminar flow can be reached at high amplitudes of oscillation. Comparing the ASHG efficiency of a rough and smooth surface, we find that the rough surface is more efficient in generating second-harmonic waves. This suggests that ASHG can be used to obtain a roughness parameter independent from the resonance frequency or bandwidth (damping) of a quartz-crystal resonator. Such an independent determination of roughness should be very interesting in practical applications |
---|---|
Beschreibung: | Date Completed 12.12.2005 Date Revised 26.10.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |