|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM154852112 |
003 |
DE-627 |
005 |
20231223070855.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0516.xml
|
035 |
|
|
|a (DE-627)NLM154852112
|
035 |
|
|
|a (NLM)15835674
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Tantayakom, V
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Study of Ca-ATMP precipitation in the presence of magnesium ion
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 12.12.2005
|
500 |
|
|
|a Date Revised 26.10.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a ATMP (aminotri(methylenephosphonic acid)), a phosphonate scale inhibitor used in the petroleum industry, was used as a model scale inhibitor in this study. One of the goals of this work was to determine the range of conditions under which Mg ions, which are formed in reservoir formations containing dolomite, modulate the formation of Ca-ATMP precipitate as a scale inhibitor. The results revealed that the amount of ATMP precipitated decreased with addition of Mg ions in solution at all values of the solution pH. Furthermore, an increase in both the solution pH and the concentration of the divalent cations in solution resulted in a change of the molar ratio of (Ca + Mg) to ATMP in the precipitates. At a low solution pH (pH 1.5), Mg ions had little effect on the composition of the Ca-ATMP precipitate. However, at higher values of the solution pH (pH 4 and 7), the Ca to ATMP molar ratio in the precipitates decreased with increasing concentration of the Mg. Here it was found that Mg ions replaced Ca ions on available reactive sites of ATMP molecules. These results determined the limits of the Mg ion concentration, which affects the precipitation of Ca-ATMP, Mg-ATMP, and (Ca + Mg)-ATMP. The dissolution of the scale inhibitors was studied using a rotating disk reactor. These experiments showed that the total divalent cation molar ratio (Ca + Mg) to ATMP in the precipitates is the primary factor that controls the rate of dissolution (release) of the phosphonate precipitates. The phosphonate precipitate dissolution rates decreased as the molar ratio of divalent cations to ATMP in the precipitates increased
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Fogler, H Scott
|e verfasserin
|4 aut
|
700 |
1 |
|
|a de Moraes, F F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bualuang, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chavadej, S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Malakul, P
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 20(2004), 6 vom: 16. März, Seite 2220-6
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2004
|g number:6
|g day:16
|g month:03
|g pages:2220-6
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2004
|e 6
|b 16
|c 03
|h 2220-6
|