Isothermal titration calorimetric studies on the temperature dependence of binding interactions between poly(propylene glycol)s and sodium dodecyl sulfate

Isothermal titration calorimetry (ITC) is a sensitive research tool for examining the binding interactions between surfactant and polymer where the differential enthalpy during the binding process is monitored. In addition to the critical micelle concentration (cmc) and the micellization enthalpy (d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 6 vom: 16. März, Seite 2177-83
1. Verfasser: Dai, S (VerfasserIn)
Weitere Verfasser: Tam, K C
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Isothermal titration calorimetry (ITC) is a sensitive research tool for examining the binding interactions between surfactant and polymer where the differential enthalpy during the binding process is monitored. In addition to the critical micelle concentration (cmc) and the micellization enthalpy (deltaHm), the effective micellar charge fraction (beta) of the ionic surfactant micellization process can also be determined from ITC thermograms. Poly(propylene glycol) (PPG) exhibits a lower critical solution temperature (LCST) ranging from 15 to 42 degrees C, depending on the molecular weights. We report, for the first time, the binding interactions between sodium dodecyl sulfate (SDS) and 1,000, 2,000 and 3,000 Da PPGs, where different binding mechanisms are in operation, depending on the temperature. At temperatures lower than the LCST, the binding interactions are similar to those of SDS and low molecular weight poly(ethylene glycol)s (MW < 3500 Da). At temperatures greater than the LCST, the binding interactions are dominated by direct solubilization of PPG chains into mixed micellar cores. At temperatures near the LCST, the binding interactions are controlled by the balance ofthe PPG solubilization at low SDS concentrations and polymer-induced micellization at high SDS concentrations
Beschreibung:Date Completed 12.12.2005
Date Revised 26.10.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827