|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM154846600 |
003 |
DE-627 |
005 |
20231223070849.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0516.xml
|
035 |
|
|
|a (DE-627)NLM154846600
|
035 |
|
|
|a (NLM)15835116
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, S H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Ultrahigh surface area nanoporous silica particles via an aero-sol-gel process
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 20.06.2005
|
500 |
|
|
|a Date Revised 26.10.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a We describe a new salt-assisted aero-sol-gel approach to produce spherical nanosized mesoporous silica particles. As an alternative to expensive templating mediums in prior works, salt (NaCl) was employed as a templating medium because it is thermally stable, recyclable, and easily leached. Furthermore, we demonstrate the ability to carry out traditional sol-gel chemistry within an aerosol droplet. The role of salt in sol-gel chemistry and aerosol processing was investigated as a function of hydrolysis time. It was verified that salt accelerates the kinetics of silica gelation, and simultaneously becomes an excellent templating medium to support nano-sized pores inside silica structures in the aerosol processing route. The presence of salt results in a roughly ten-fold increasing in the pore specific surface area and pore volume, subsequent to leaching of the salt matrix. The surface area and pore volume of the as-produced nanoporous silica particles was found to increase with increasing sol-gel hydrolysis time
|
650 |
|
4 |
|a Letter
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Aerosols
|2 NLM
|
650 |
|
7 |
|a Gels
|2 NLM
|
650 |
|
7 |
|a Silicon Dioxide
|2 NLM
|
650 |
|
7 |
|a 7631-86-9
|2 NLM
|
700 |
1 |
|
|a Liu, B Y H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zachariah, M R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 20(2004), 7 vom: 30. März, Seite 2523-6
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:20
|g year:2004
|g number:7
|g day:30
|g month:03
|g pages:2523-6
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 20
|j 2004
|e 7
|b 30
|c 03
|h 2523-6
|