|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM154702943 |
003 |
DE-627 |
005 |
20250206080754.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0516.xml
|
035 |
|
|
|a (DE-627)NLM154702943
|
035 |
|
|
|a (NLM)15819914
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Nagel, Jennifer M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Atmospheric CO2 enrichment alters energy assimilation, investment and allocation in Xanthium strumarium
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 07.06.2005
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Energy-use efficiency and energy assimilation, investment and allocation patterns are likely to influence plant growth responses to increasing atmospheric CO2 concentration ([CO2]). Here, we describe the influence of elevated [CO2] on energetic properties as a mechanism of growth responses in Xanthium strumarium. Individuals of X. strumarium were grown at ambient or elevated [CO2] and harvested. Total biomass and energetic construction costs (CC) of leaves, stems, roots and fruits and percentage of total biomass and energy allocated to these components were determined. Photosynthetic energy-use efficiency (PEUE) was calculated as the ratio of total energy gained via photosynthetic activity (Atotal) to leaf CC. Elevated [CO2] increased leaf Atotal, but decreased CC per unit mass of leaves and roots. Consequently, X. strumarium individuals produced more leaf and root biomass at elevated [CO2] without increasing total energy investment in these structures (CCtotal). Whole-plant biomass was associated positively with PEUE. Whole-plant construction required 16.1% less energy than modeled whole-plant energy investment had CC not responded to increased [CO2]. As a physiological mechanism affecting growth, altered energetic properties could positively influence productivity of X. strumarium, and potentially other species, at elevated [CO2]
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
7 |
|a Carbon Dioxide
|2 NLM
|
650 |
|
7 |
|a 142M471B3J
|2 NLM
|
700 |
1 |
|
|a Wang, Xianzhong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lewis, James D
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fung, Howard A
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tissue, David T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Griffin, Kevin L
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1990
|g 166(2005), 2 vom: 15. Mai, Seite 513-23
|w (DE-627)NLM09818248X
|x 0028-646X
|7 nnns
|
773 |
1 |
8 |
|g volume:166
|g year:2005
|g number:2
|g day:15
|g month:05
|g pages:513-23
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 166
|j 2005
|e 2
|b 15
|c 05
|h 513-23
|