Theoretical study on the reaction mechanism of the methyl radical with nitrogen oxides

The radical-molecule reaction mechanism of CH3 with NOx (x = 1, 2) has been explored theoretically at the B3LYP/6-311Gd,p and MC-QCISD (single-point) levels of theory. For the singlet potential energy surface (PES) of the CH3 + NO2 reaction, it is found that the carbon to middle nitrogen attack betw...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 26(2005), 8 vom: 15. Juni, Seite 807-17
1. Verfasser: Zhang, Jia-Xu (VerfasserIn)
Weitere Verfasser: Liu, Jing-Yao, Li, Ze-Sheng, Sun, Chia-Chung
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM154636460
003 DE-627
005 20231223070431.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0516.xml 
035 |a (DE-627)NLM154636460 
035 |a (NLM)15812789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Jia-Xu  |e verfasserin  |4 aut 
245 1 0 |a Theoretical study on the reaction mechanism of the methyl radical with nitrogen oxides 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.06.2005 
500 |a Date Revised 17.05.2005 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The radical-molecule reaction mechanism of CH3 with NOx (x = 1, 2) has been explored theoretically at the B3LYP/6-311Gd,p and MC-QCISD (single-point) levels of theory. For the singlet potential energy surface (PES) of the CH3 + NO2 reaction, it is found that the carbon to middle nitrogen attack between CH3 and NO2 can form energy-rich adduct a (H3CNO2) with no barrier followed by isomerization to b1 (CH3ONO-trans), which can easily convert to b2 (CH3ONO-cis). Subsequently, starting from b (b1, b2), the most feasible pathway is the direct N-O bond cleavage of b (b1, b2) leading to P1 (CH3O + NO) or the 1,3-H-shift and N-O bond rupture of b1 to form P2 (CH2O + HNO), both of which may have comparable contribution to the reaction CH3 + NO2. Much less competitively, b2 can take a concerted H-shift and N-O bond cleavage to form product P3 (CH2O + HON). Because the intermediates and transition states involved in the above three channels are all lower than the reactants in energy, the CH3 + NO2 reaction is expected to be rapid, as is consistent with the experimental measurement in quality. For the singlet PES of the CH3 + NO reaction, the major product is found to be P1 (HCN + H2O), whereas the minor products are P2 (HNCO + H2) and P3 (HNC +H2O). The CH3 + NO reaction is predicted to be only of significance at high temperatures because the transition states involved in the most feasible pathways lie almost above the reactants. Compared with the singlet pathways, the triplet pathways may have less contributions to both reactions. The present study may be helpful for further experimental investigation of the title reactions 
650 4 |a Journal Article 
700 1 |a Liu, Jing-Yao  |e verfasserin  |4 aut 
700 1 |a Li, Ze-Sheng  |e verfasserin  |4 aut 
700 1 |a Sun, Chia-Chung  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 26(2005), 8 vom: 15. Juni, Seite 807-17  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:26  |g year:2005  |g number:8  |g day:15  |g month:06  |g pages:807-17 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2005  |e 8  |b 15  |c 06  |h 807-17