Ultraporous single phase iron oxide-silica nanostructured aerogels from ferrous precursors
Monoliths of iron oxide-silica aerogel nanocomposites have been synthesized using a novel synthesis route which consists of impregnating silica wet gels with anhydrous iron(II) precursors followed by ethanol supercritical drying of the gels. The process yields aerogels exhibiting high porosity, larg...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 4 vom: 17. Feb., Seite 1425-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Monoliths of iron oxide-silica aerogel nanocomposites have been synthesized using a novel synthesis route which consists of impregnating silica wet gels with anhydrous iron(II) precursors followed by ethanol supercritical drying of the gels. The process yields aerogels exhibiting high porosity, large surface areas (approximately 900 m2/g), rather low densities (approximately 0.6 g/cm3), and a homogeneous distribution of single-phase maghemite, gamma-Fe2O3, nanoparticles with average sizes in the 7-8 nm range. Remarkably, the gamma-Fe2O3 nanoparticles are obtained in the as-dried state without the need of postannealing. The nanoparticles are mostly superparamagnetic at room temperature but become blocked in a ferrimagnetic state at lower temperatures |
---|---|
Beschreibung: | Date Completed 26.01.2006 Date Revised 26.10.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |