A nonviral transfection approach in vitro : the design of a gold nanoparticle vector joint with microelectromechanical systems

Au nanoparticles modified with 21-base thiolated-oligonucleotides have been evaluated as delivery vehicles for the development of a nonviral transfection platform. The electromigration combined with electroporation for DNA delivery in an osteoblast like cell was employed to test on microchips. Elect...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 4 vom: 17. Feb., Seite 1369-74
1. Verfasser: Jen, Chun-Ping (VerfasserIn)
Weitere Verfasser: Chen, Yu-Hung, Fan, Chun-sheng, Yeh, Chen-Sheng, Lin, Yu-Cheng, Shieh, Dar-Bin, Wu, Chao-Ling, Chen, Dong-Hwang, Chou, Chen-Hsi
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Oligonucleotides Gold 7440-57-5 DNA 9007-49-2
Beschreibung
Zusammenfassung:Au nanoparticles modified with 21-base thiolated-oligonucleotides have been evaluated as delivery vehicles for the development of a nonviral transfection platform. The electromigration combined with electroporation for DNA delivery in an osteoblast like cell was employed to test on microchips. Electroporation introduces foreign materials into cells by applying impulses of electric field to induce multiple transient pores on the cell membrane through dielectric breakdown of the cell membrane. On the basis of the characteristic surface plasmon of the Au particles, UV-vis absorption was utilized to qualitatively judge the efficiency of delivery. Transmission electron microscopy images and atomic absorption measurements (quantitative analysis) provided evidence of the bare Au and Au/oligonucleotide nanoparticles before and after electroporation and electromigration function. The experiments demonstrated that electrophoretic migration followed by electroporation significantly enhanced the transportation efficiency of the nanoparticle-oligonucleotide complexes as compared with electroporation alone. Most interestingly, Au capped with oligonucleotides led to optimal performance. On the other hand, the bare Au colloidal suspensions resulted in aggregation, which might be an obstacle to the internalization process. In addition, analytical results demonstrated an increase in the local particle concentrations on the cell surface that provided additional support for the mechanism underlying the improved Au nanoparticle transportation into cells in the presence of electromigration function
Beschreibung:Date Completed 26.01.2006
Date Revised 26.10.2019
published: Print
Citation Status MEDLINE
ISSN:1520-5827