Statistical shape analysis : clustering, learning, and testing

Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed shapes under competing probability mod...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 4 vom: 14. Apr., Seite 590-602
1. Verfasser: Srivastava, A (VerfasserIn)
Weitere Verfasser: Joshi, S H, Mio, W, Xiuwen Liu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000naa a22002652 4500
001 NLM154461237
003 DE-627
005 20231223070046.0
007 cr uuu---uuuuu
008 231223s2005 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2005.86  |2 doi 
028 5 2 |a pubmed24n0515.xml 
035 |a (DE-627)NLM154461237 
035 |a (NLM)15794163 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Srivastava, A  |e verfasserin  |4 aut 
245 1 0 |a Statistical shape analysis  |b clustering, learning, and testing 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 21.04.2005 
500 |a Date Revised 06.11.2020 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed shapes under competing probability models. Clustering at any level of hierarchy is performed using a mimimum variance type criterion criterion and a Markov process. Statistical means of clusters provide shapes to be clustered at the next higher level, thus building a hierarchy of shapes. Using finite-dimensional approximations of spaces tangent to the shape space at sample means, we (implicitly) impose probability models on the shape space, and results are illustrated via random sampling and classification (hypothesis testing). Together, hierarchical clustering and hypothesis testing provide an efficient framework for shape retrieval. Examples are presented using shapes and images from ETH, Surrey, and AMCOM databases 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Joshi, S H  |e verfasserin  |4 aut 
700 1 |a Mio, W  |e verfasserin  |4 aut 
700 1 |a Xiuwen Liu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 4 vom: 14. Apr., Seite 590-602  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:4  |g day:14  |g month:04  |g pages:590-602 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2005.86  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 4  |b 14  |c 04  |h 590-602