|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM154461237 |
003 |
DE-627 |
005 |
20231223070046.0 |
007 |
cr uuu---uuuuu |
008 |
231223s2005 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2005.86
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0515.xml
|
035 |
|
|
|a (DE-627)NLM154461237
|
035 |
|
|
|a (NLM)15794163
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Srivastava, A
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Statistical shape analysis
|b clustering, learning, and testing
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 21.04.2005
|
500 |
|
|
|a Date Revised 06.11.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed shapes under competing probability models. Clustering at any level of hierarchy is performed using a mimimum variance type criterion criterion and a Markov process. Statistical means of clusters provide shapes to be clustered at the next higher level, thus building a hierarchy of shapes. Using finite-dimensional approximations of spaces tangent to the shape space at sample means, we (implicitly) impose probability models on the shape space, and results are illustrated via random sampling and classification (hypothesis testing). Together, hierarchical clustering and hypothesis testing provide an efficient framework for shape retrieval. Examples are presented using shapes and images from ETH, Surrey, and AMCOM databases
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, Non-P.H.S.
|
650 |
|
4 |
|a Validation Study
|
700 |
1 |
|
|a Joshi, S H
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mio, W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiuwen Liu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 27(2005), 4 vom: 14. Apr., Seite 590-602
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2005
|g number:4
|g day:14
|g month:04
|g pages:590-602
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2005.86
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2005
|e 4
|b 14
|c 04
|h 590-602
|