A massively parallel electrochemical approach to the miniaturization of organic micro- and nanostructures on surfaces

This paper describes a simple and convenient strategy for reducing the dimensions of organic micro-and nanostructures on metal surfaces. By varying electrochemical desorption conditions, features patterned by dip-pen nanolithography or micro contact printing and made of linear alkanethiols or seleno...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 3 vom: 03. Feb., Seite 962-8
1. Verfasser: Zhang, Yi (VerfasserIn)
Weitere Verfasser: Salaita, Khalid, Lim, Jung-Hyurk, Lee, Ki-Bum, Mirkin, Chad A
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This paper describes a simple and convenient strategy for reducing the dimensions of organic micro-and nanostructures on metal surfaces. By varying electrochemical desorption conditions, features patterned by dip-pen nanolithography or micro contact printing and made of linear alkanethiols or selenols can be gradually desorbed in a controlled fashion. The process is referred to as electrochemical whittling because the adsorbate desorption is initiated at the exterior of the feature and moves inward as a function of time. The whittling process and adsorbate desorption were studied as a function of substrate morphology, adsorbate head and tail groups, and electrolyte solvent and salt. Importantly, one can independently address different nanostructures made of different adsorbates and effect their miniaturization based upon ajudicious selection of adsorbate, applied potential, and supporting electrolyte. Some of the physical and chemical origins of these observations have been elucidated
Beschreibung:Date Completed 03.02.2006
Date Revised 26.10.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827