Face recognition using laplacianfaces

We propose an appearance-based face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which effec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 3 vom: 12. März, Seite 328-340
1. Verfasser: Xiaofei He (VerfasserIn)
Weitere Verfasser: Shuicheng Yan, Yuxiao Hu, Niyogi, P, Hong-Jiang Zhang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM154026891
003 DE-627
005 20231223065207.0
007 cr uuu---uuuuu
008 231223s2005 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2005.55  |2 doi 
028 5 2 |a pubmed24n0514.xml 
035 |a (DE-627)NLM154026891 
035 |a (NLM)15747789 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiaofei He  |e verfasserin  |4 aut 
245 1 0 |a Face recognition using laplacianfaces 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.03.2005 
500 |a Date Revised 06.11.2020 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We propose an appearance-based face recognition method called the Laplacianface approach. By using Locality Preserving Projections (LPP), the face images are mapped into a face subspace for analysis. Different from Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) which effectively see only the Euclidean structure of face space, LPP finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. The Laplacianfaces are the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the face manifold. In this way, the unwanted variations resulting from changes in lighting, facial expression, and pose may be eliminated or reduced. Theoretical analysis shows that PCA, LDA, and LPP can be obtained from different graph models. We compare the proposed Laplacianface approach with Eigenface and Fisherface methods on three different face data sets. Experimental results suggest that the proposed Laplacianface approach provides a better representation and achieves lower error rates in face recognition 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Shuicheng Yan  |e verfasserin  |4 aut 
700 1 |a Yuxiao Hu  |e verfasserin  |4 aut 
700 1 |a Niyogi, P  |e verfasserin  |4 aut 
700 1 |a Hong-Jiang Zhang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 3 vom: 12. März, Seite 328-340  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:3  |g day:12  |g month:03  |g pages:328-340 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2005.55  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 3  |b 12  |c 03  |h 328-340