Geometry-aware bases for shape approximation

We introduce a new class of shape approximation techniques for irregular triangular meshes. Our method approximates the geometry of the mesh using a linear combination of a small number of basis vectors. The basis vectors are functions of the mesh connectivity and of the mesh indices of a number of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 11(2005), 2 vom: 12. März, Seite 171-80
1. Verfasser: Sorkine, Olga (VerfasserIn)
Weitere Verfasser: Cohen-Or, Daniel, Irony, Dror, Toledo, Sivan
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM154025542
003 DE-627
005 20231223065205.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0514.xml 
035 |a (DE-627)NLM154025542 
035 |a (NLM)15747640 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sorkine, Olga  |e verfasserin  |4 aut 
245 1 0 |a Geometry-aware bases for shape approximation 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 31.03.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We introduce a new class of shape approximation techniques for irregular triangular meshes. Our method approximates the geometry of the mesh using a linear combination of a small number of basis vectors. The basis vectors are functions of the mesh connectivity and of the mesh indices of a number of anchor vertices. There is a fundamental difference between the bases generated by our method and those generated by geometry-oblivious methods, such as Laplacian-based spectral methods. In the latter methods, the basis vectors are functions of the connectivity alone. The basis vectors of our method, in contrast, are geometry-aware since they depend on both the connectivity and on a binary tagging of vertices that are "geometrically important" in the given mesh (e.g., extrema). We show that, by defining the basis vectors to be the solutions of certain least-squares problems, the reconstruction problem reduces to solving a single sparse linear least-squares problem. We also show that this problem can be solved quickly using a state-of-the-art sparse-matrix factorization algorithm. We show how to select the anchor vertices to define a compact effective basis from which an approximated shape can be reconstructed. Furthermore, we develop an incremental update of the factorization of the least-squares system. This allows a progressive scheme where an initial approximation is incrementally refined by a stream of anchor points. We show that the incremental update and solving the factored system are fast enough to allow an online refinement of the mesh geometry 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Cohen-Or, Daniel  |e verfasserin  |4 aut 
700 1 |a Irony, Dror  |e verfasserin  |4 aut 
700 1 |a Toledo, Sivan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 11(2005), 2 vom: 12. März, Seite 171-80  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:11  |g year:2005  |g number:2  |g day:12  |g month:03  |g pages:171-80 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 11  |j 2005  |e 2  |b 12  |c 03  |h 171-80