Double proton transfer and one-electron oxidation behavior in double H-bonded glycinamide-glycine complex in the gas phase

(c) 2005 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 26(2005), 6 vom: 30. Apr., Seite 552-60
1. Verfasser: Li, Ping (VerfasserIn)
Weitere Verfasser: Bu, Yuxiang
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't glycine amide 4JDT453NWO Glycine TE7660XO1C
Beschreibung
Zusammenfassung:(c) 2005 Wiley Periodicals, Inc.
The behaviors of double proton transfer (DPT) occurring in a representative glycinamide-glycine complex have been investigated employing the B3LYP/6-311++G** level of theory. Thermodynamic and especially kinetic parameters, such as tautomerization energy, equilibrium constant, and barrier heights have been discussed, respectively. The relevant quantities involved in the DPT process including geometrical changes, interaction energies, and deformation energies have also been studied. Analogous to that of tautomeric process assisted with a formic acid molecule, the participation of a glycine molecule favors the proceeding of the proton transfer (PT) for glycinamide compared with that without mediator-assisted case. The DPT process proceeds with a concerted mechanism rather than a stepwise one because no zwitterionic complexes have been located during the DPT process. The barrier heights are 12.14 and 0.83 kcal/mol for the forward and reverse directions, respectively. However, both of them have been reduced by 3.10 and 2.66 kcal/mol to 9.04 and -1.83 kcal/mol with further inclusion of zero-point vibrational energy (ZPVE) corrections, where the disappearance of the reverse barrier height implies that the reverse reaction should proceed with barrierless spontaneously, analogous to those of DPTs occurring between glycinamide and formic acid (or formamide). Additionally, the oxidation process for the double H-bonded glycinamide-glycine complex has also been investigated. The oxidated product is characterized by a distonic radical cation due to the fact that one-electron oxidation takes place on glycine fragment and a proton has been transferred from glycine to glycinamide fragment spontaneously. As a result, the vertical and adiabatic ionization potentials for the neutral complex have been determined to be about 8.71 and 7.85 eV, respectively, where both of them have been reduced by about 0.54 (1.11) and 0.75 (1.13) eV relative to those of isolated glycinamide (glycine) due to the formation of the intermolecular H-bond
Beschreibung:Date Completed 13.04.2005
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1096-987X