Rheology of viscoelastic solutions of cationic surfactant. Effect of added associating polymer

Rheological studies were performed with aqueous salt solutions of viscoelastic cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride (EHAC) and its mixtures with hydrophobically modified polyacrylamide. The solutions of surfactant itself above the concentration of crossover of wormlike...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 4 vom: 15. Feb., Seite 1524-30
1. Verfasser: Shashkina, Julia A (VerfasserIn)
Weitere Verfasser: Philippova, Olga E, Zaroslov, Yuri D, Khokhlov, Alexei R, Pryakhina, Tatyana A, Blagodatskikh, Inessa V
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Cations Erucic Acids Micelles Polymers Quaternary Ammonium Compounds Solutions Surface-Active Agents erucyl bis(hydroxyethyl) methylammonium chloride
Beschreibung
Zusammenfassung:Rheological studies were performed with aqueous salt solutions of viscoelastic cationic surfactant erucyl bis(hydroxyethyl)methylammonium chloride (EHAC) and its mixtures with hydrophobically modified polyacrylamide. The solutions of surfactant itself above the concentration of crossover of wormlike micelles exhibit two regions of rheological response. In the first region, they behave like polymer solutions in semidilute regime characterized by viscoelastic behavior with a spectrum of relaxation times. In the second region, unlike polymer solutions their relaxation after shear is dominated by a single relaxation time. Being composed of "living" micelles, the EHAC solutions easily lose their viscosity at the variation of the external conditions. For instance, heating from 20 to 60 degrees C reduces viscosity by up to 2 orders of magnitude, while added hydrocarbons induce a sudden drop of viscosity by 3-6 orders of magnitude. Polymer profoundly affects the rheological properties of EHAC solutions. The polymer/surfactant system demonstrates a 10,000-fold increase in viscosity as compared to pure-component solutions, the effect being more pronounced for polymer with less blocky distribution of hydrophobic units. A synergistic enhancement of viscosity was attributed to the formation of common network, in which some subchains are made up of elongated surfactant micelles, while others are composed of polymer. At cross-links the hydrophobic side groups of polymer anchor EHAC micelles. In contrast to surfactant itself, the polymer/surfactant system retains high viscosity at elevated temperature; at the same time it keeps a high responsiveness to hydrocarbon medium inherent to EHAC
Beschreibung:Date Completed 12.06.2006
Date Revised 15.11.2006
published: Print
Citation Status MEDLINE
ISSN:1520-5827