Rapid gel-like latex film formation through controlled ionic coacervation of latex polymer particles containing strong cationic and protonated weak acid functionalities

We introduce a controlled ionic coacervation (CIC) process that rapidly forms uniform, gel-like latex films with significant mechanical integrity without loss of water from the film. This process uses latex particles that contain both strong cationic charges and weak protonated acid groups. An incre...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 4 vom: 15. Feb., Seite 1192-200
1. Verfasser: Rose, Gene D (VerfasserIn)
Weitere Verfasser: Harris, J Keith, McCann, Gordon D, Weishuhn, Jamie M, Schmidt, Donald L
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We introduce a controlled ionic coacervation (CIC) process that rapidly forms uniform, gel-like latex films with significant mechanical integrity without loss of water from the film. This process uses latex particles that contain both strong cationic charges and weak protonated acid groups. An increase in pH ionizes the weak acid and triggers the rapid setting of the latex films. The necessary increase in pH can be achieved by coating the latex onto an alkaline surface (such as concrete) or by controlled release of a fugitive acid (such as carbon dioxide). We explore the effect of latex composition and concentration on this process. We show that the CIC process does not require a water-soluble polymer to obtain the rapid-set film properties. Our proposed mechanism for CIC process is consistent with models for rapid, irreversible, particle-particle aggregation
Beschreibung:Date Completed 12.06.2006
Date Revised 08.02.2005
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827