|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM153468297 |
003 |
DE-627 |
005 |
20231223064058.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0512.xml
|
035 |
|
|
|a (DE-627)NLM153468297
|
035 |
|
|
|a (NLM)15688563
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Guillemaut, Jean-Yves
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Using points at infinity for parameter decoupling in camera calibration
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.03.2005
|
500 |
|
|
|a Date Revised 10.12.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The majority of camera calibration methods, including the Gold Standard algorithm, use point-based information and simultaneously estimate all calibration parameters. In contrast, we propose a novel calibration method that exploits line orientation information and decouples the problem into two simpler stages. We formulate the problem as minimization of the lateral displacement between single projected image lines and their vanishing points. Unlike previous vanishing point methods, parallel line pairs are not required. Additionally, the invariance properties of vanishing points mean that multiple images related by pure translation can be used to increase the calibration data set size without increasing the number of estimated parameters. We compare this method with vanishing point methods and the Gold Standard algorithm and demonstrate that it has comparable performance
|
650 |
|
4 |
|a Comparative Study
|
650 |
|
4 |
|a Evaluation Study
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Validation Study
|
700 |
1 |
|
|a Aguado, Alberto S
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Illingworth, John
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 27(2005), 2 vom: 18. Feb., Seite 265-70
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2005
|g number:2
|g day:18
|g month:02
|g pages:265-70
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2005
|e 2
|b 18
|c 02
|h 265-70
|