Representation and detection of deformable shapes

We describe some techniques that can be used to represent and detect deformable shapes in images. The main difficulty with deformable template models is the very large or infinite number of possible nonrigid transformations of the templates. This makes the problem of finding an optimal match of a de...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 27(2005), 2 vom: 18. Feb., Seite 208-20
1. Verfasser: Felzenszwalb, Pedro F (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article Validation Study
LEADER 01000naa a22002652 4500
001 NLM153468238
003 DE-627
005 20231223064058.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0512.xml 
035 |a (DE-627)NLM153468238 
035 |a (NLM)15688558 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Felzenszwalb, Pedro F  |e verfasserin  |4 aut 
245 1 0 |a Representation and detection of deformable shapes 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 08.03.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We describe some techniques that can be used to represent and detect deformable shapes in images. The main difficulty with deformable template models is the very large or infinite number of possible nonrigid transformations of the templates. This makes the problem of finding an optimal match of a deformable template to an image incredibly hard. Using a new representation for deformable shapes, we show how to efficiently find a global optimal solution to the nonrigid matching problem. The representation is based on the description of objects using triangulated polygons. Our matching algorithm can minimize a large class of energy functions, making it applicable to a wide range of problems. We present experimental results of detecting shapes in medical images and images of natural scenes. Our method does not depend on initialization and is very robust, yielding good matches even in images with high clutter. We also consider the problem of learning a nonrigid shape model for a class of objects from examples. We show how to learn good models while constraining them to be in the form required by the matching algorithm 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Validation Study 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 27(2005), 2 vom: 18. Feb., Seite 208-20  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:27  |g year:2005  |g number:2  |g day:18  |g month:02  |g pages:208-20 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2005  |e 2  |b 18  |c 02  |h 208-20