Breakdown of colloid filtration theory : role of the secondary energy minimum and surface charge heterogeneities

The mechanisms and causes of deviation from the classical colloid filtration theory (CFT) in the presence of repulsive Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions were investigated. The deposition behavior of uniform polystyrene latex colloids in columns packed with spherical soda-lime glas...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 3 vom: 01. Feb., Seite 841-52
1. Verfasser: Tufenkji, Nathalie (VerfasserIn)
Weitere Verfasser: Elimelech, Menachem
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The mechanisms and causes of deviation from the classical colloid filtration theory (CFT) in the presence of repulsive Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions were investigated. The deposition behavior of uniform polystyrene latex colloids in columns packed with spherical soda-lime glass beads was systematically examined over a broad range of physicochemical conditions, whereby both the fluid-phase effluent particle concentration and the profile of retained particles were measured. Experiments conducted with three different-sized particles in a simple (1:1) electrolyte solution reveal the controlling influence of secondary minimum deposition on the deviation from CFT. In a second series of experiments, sodium dodecyl sulfate (SDS) was added to the background electrolyte solution with the intent of masking near-neutrally charged regions of particle and collector surfaces. These results indicate that the addition of a small amount of anionic surfactant is sufficient to reduce the influence of certain surface charge inhomogeneities on the deviation from CFT. To verify the validity of CFT in the absence of surface charge heterogeneities, a third set of experiments was conducted using solutions of high pH to mask the influence of metal oxide impurities on glass bead surfaces. The results demonstrate that both secondary minimum deposition and surface charge heterogeneities contribute significantly to the deviation from CFT generally observed in colloid deposition studies. It is further shown that agreement with CFT is obtained even in the presence of an energy barrier (i.e., repulsive colloidal interactions), suggesting that it is not the general existence of repulsive conditions which causes deviation but rather the combined occurrence of "fast" and "slow" particle deposition
Beschreibung:Date Completed 25.05.2006
Date Revised 25.01.2005
published: Print
CommentIn: Langmuir. 2005 Nov 8;21(23):10895; author reply 10896-7. - PMID 16262368
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827