Wastewater nitrogen removal in Sbrs, applying a step-feed strategy : from lab-scale to pilot-plant operation
One of the problems of nitrogen removal from wastewater when applying sequencing batch reactor (SBR) technology, is the specific use of organic matter for denitrification purposes. Since easily biodegradable organic matter is rapidly consumed under aerobic or anoxic conditions (i.e. aerobic oxidatio...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 50(2004), 10 vom: 07., Seite 89-96 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Nitrites Organic Chemicals Sewage Nitrogen N762921K75 Oxygen S88TT14065 |
Zusammenfassung: | One of the problems of nitrogen removal from wastewater when applying sequencing batch reactor (SBR) technology, is the specific use of organic matter for denitrification purposes. Since easily biodegradable organic matter is rapidly consumed under aerobic or anoxic conditions (i.e. aerobic oxidation or anoxic denitrification, respectively), it is an important factor to consider when scaling up SBRs from the laboratory to real plant operation. In this paper, we present the results obtained in relation to scaling up reactors from lab-scale to pilot-plant scale, treating real wastewater from two different locations: the laboratory and in situ, respectively. In order to make using easily biodegradable organic matter more efficient, the filling phases of SBR cycles were adjusted according to a step-feed strategy composed of 6 anoxic-aerobic events. Feeding only occurred during anoxic phases. The results obtained demonstrated that the methodology may be useful in treating real wastewater with high carbon and nitrogen variations, as it always kept effluent levels lower than the official standards require (effluent total COD lower than 125 mg COD/L and effluent Total Nitrogen lower than 15 mg N/L) |
---|---|
Beschreibung: | Date Completed 19.04.2005 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |