|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM153115149 |
003 |
DE-627 |
005 |
20250206041654.0 |
007 |
tu |
008 |
231223s2005 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0511.xml
|
035 |
|
|
|a (DE-627)NLM153115149
|
035 |
|
|
|a (NLM)15651033
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bindewald, Eckart
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A scoring function for docking ligands to low-resolution protein structures
|
264 |
|
1 |
|c 2005
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 31.03.2005
|
500 |
|
|
|a Date Revised 21.11.2008
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Copyright 2005 Wiley Periodicals, Inc.
|
520 |
|
|
|a We present a docking method that uses a scoring function for protein-ligand docking that is designed to maximize the docking success rate for low-resolution protein structures. We find that the resulting scoring function parameters are very different depending on whether they were optimized for high- or low-resolution protein structures. We show that this docking method can be successfully applied to predict the ligand-binding site of low-resolution structures. For a set of 25 protein-ligand complexes, in 76% of the cases, more than 50% of ligand-contacting residues are correctly predicted (using receptor crystal structures where the binding site is unspecified). Using decoys of the receptor structures having a 4 A RMSD from the native structure, for the same set of complexes, in 72% of the cases, we obtain at least one correctly predicted ligand-contacting residue. Furthermore, using an 81-protein-ligand set described by Jain, in 76 (93.8%) cases, the algorithm correctly predicts more than 50% of the ligand-contacting residues when native protein structures are used. Using 3 A RMSD from native decoys, in all but two cases (97.5%), the algorithm predicts at least one ligand-binding residue correctly. Finally, compared to the previously published Dolores method, for 298 protein-ligand pairs, the number of cases in which at least half of the specific contacts are correctly predicted is more than four times greater
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, U.S. Gov't, P.H.S.
|
650 |
|
7 |
|a Ligands
|2 NLM
|
700 |
1 |
|
|a Skolnick, Jeffrey
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of computational chemistry
|d 1984
|g 26(2005), 4 vom: 01. März, Seite 374-83
|w (DE-627)NLM098138448
|x 0192-8651
|7 nnns
|
773 |
1 |
8 |
|g volume:26
|g year:2005
|g number:4
|g day:01
|g month:03
|g pages:374-83
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 26
|j 2005
|e 4
|b 01
|c 03
|h 374-83
|