Robust rotation-invariant texture classification using a model based approach

In this paper, a model based texture classification procedure is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We sho...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 13(2004), 6 vom: 23. Juni, Seite 782-91
1. Verfasser: Campisi, Patrizio (VerfasserIn)
Weitere Verfasser: Neri, Alessandro, Panci, Gianpiero, Scarano, Gaetano
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Validation Study
LEADER 01000naa a22002652 4500
001 NLM153094451
003 DE-627
005 20231223063326.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0510.xml 
035 |a (DE-627)NLM153094451 
035 |a (NLM)15648869 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Campisi, Patrizio  |e verfasserin  |4 aut 
245 1 0 |a Robust rotation-invariant texture classification using a model based approach 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.02.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, a model based texture classification procedure is presented. The texture is modeled as the output of a linear system driven by a binary image. This latter retains the morphological characteristics of the texture and it is specified by its spatial autocorrelation function (ACF). We show that features extracted from the ACF of the binary excitation suffice to represent the texture for classification purposes. Specifically, we employ a moment invariants based technique to classify the ACF. The resulting proposed classification procedure is thus inherently rotation invariant. Moreover, it is robust with respect to additive noise. Experimental results show that this approach allows obtaining high correct rotation-invariant classification rates while containing the size of the feature space 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Validation Study 
700 1 |a Neri, Alessandro  |e verfasserin  |4 aut 
700 1 |a Panci, Gianpiero  |e verfasserin  |4 aut 
700 1 |a Scarano, Gaetano  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 13(2004), 6 vom: 23. Juni, Seite 782-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:13  |g year:2004  |g number:6  |g day:23  |g month:06  |g pages:782-91 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 13  |j 2004  |e 6  |b 23  |c 06  |h 782-91