A general framework for nonlinear multigrid inversion

A variety of new imaging modalities, such as optical diffusion tomography, require the inversion of a forward problem that is modeled by the solution to a three-dimensional partial differential equation. For these applications, image reconstruction is particularly difficult because the forward probl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 14(2005), 1 vom: 25. Jan., Seite 125-40
1. Verfasser: Oh, Seungseok (VerfasserIn)
Weitere Verfasser: Milstein, Adam B, Bouman, Charles A, Webb, Kevin J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2005
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000naa a22002652 4500
001 NLM15307521X
003 DE-627
005 20231223063304.0
007 tu
008 231223s2005 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0510.xml 
035 |a (DE-627)NLM15307521X 
035 |a (NLM)15646877 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oh, Seungseok  |e verfasserin  |4 aut 
245 1 2 |a A general framework for nonlinear multigrid inversion 
264 1 |c 2005 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.02.2005 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A variety of new imaging modalities, such as optical diffusion tomography, require the inversion of a forward problem that is modeled by the solution to a three-dimensional partial differential equation. For these applications, image reconstruction is particularly difficult because the forward problem is both nonlinear and computationally expensive to evaluate. In this paper, we propose a general framework for nonlinear multigrid inversion that is applicable to a wide variety of inverse problems. The multigrid inversion algorithm results from the application of recursive multigrid techniques to the solution of optimization problems arising from inverse problems. The method works by dynamically adjusting the cost functionals at different scales so that they are consistent with, and ultimately reduce, the finest scale cost functional. In this way, the multigrid inversion algorithm efficiently computes the solution to the desired fine-scale inversion problem. Importantly, the new algorithm can greatly reduce computation because both the forward and inverse problems are more coarsely discretized at lower resolutions. An application of our method to Bayesian optical diffusion tomography with a generalized Gaussian Markov random-field image prior model shows the potential for very large computational savings. Numerical data also indicates robust convergence with a range of initialization conditions for this nonconvex optimization problem 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Milstein, Adam B  |e verfasserin  |4 aut 
700 1 |a Bouman, Charles A  |e verfasserin  |4 aut 
700 1 |a Webb, Kevin J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 14(2005), 1 vom: 25. Jan., Seite 125-40  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:14  |g year:2005  |g number:1  |g day:25  |g month:01  |g pages:125-40 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 14  |j 2005  |e 1  |b 25  |c 01  |h 125-40