Use of seeds to control precipitation of calcium carbonate and determination of seed nature
Understanding and controlling precipitation reactions is a major challenge for industrial crystallization. Calcium carbonate is a widely studied system: more than 3000 papers have been devoted to the subject over the past 10 years. The first step of the precipitation of calcium carbonate, from relat...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 21(2005), 1 vom: 04. Jan., Seite 100-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2005
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Calcium Carbonate H0G9379FGK |
Zusammenfassung: | Understanding and controlling precipitation reactions is a major challenge for industrial crystallization. Calcium carbonate is a widely studied system: more than 3000 papers have been devoted to the subject over the past 10 years. The first step of the precipitation of calcium carbonate, from relatively concentrated solutions (0.01 mol/L), involves the formation of an initial gel phase which later transforms into calcite, vaterite, or a mixture of both phases. Our work aimed at controlling this first step. Nanosized seeds (8 nm), formed in situ, were used in order to control the often chaotic nucleation step which normally leads to poor phase selection and broad particle size distributions. Seeding has often been used to avoid spontaneous nucleation in metastable solutions for growth mechanism investigations of single-crystal calcium carbonate. Here the ability of a seeding method to control the precipitation reaction evolution even in the case of high supersaturation is demonstrated. The seeds and the presence of a polymeric additive (poly(acrylic acid)) allow the control of the precipitated polymorph and the specific surface area, while maintaining a narrow particle size distribution in the submicron range. Direct characterization methods did not succeed in identifying these nanoseeds; indirect methods using solubility calculations are used to demonstrate their existence and quantify size and number density of the nanosized seeds |
---|---|
Beschreibung: | Date Completed 28.06.2006 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |