Diffusion-related implications for langasite resonator operation

Oxygen and gallium diffusivities in langasite were experimentally determined by analysis of diffusion profiles of 18O and 71Ga tracers by SIMS analysis as functions of temperature and doping. Strontium-enhanced diffusivities and activation energies of approximately 1.2+/-0.2 eV confirm the predomina...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 51(2004), 11 vom: 11. Nov., Seite 1381-7
1. Verfasser: Schulz, Michal (VerfasserIn)
Weitere Verfasser: Fritze, Holger, Tuller, Harry L, Seh, Huankiat
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Oxygen and gallium diffusivities in langasite were experimentally determined by analysis of diffusion profiles of 18O and 71Ga tracers by SIMS analysis as functions of temperature and doping. Strontium-enhanced diffusivities and activation energies of approximately 1.2+/-0.2 eV confirm the predominant role of oxygen vacancies in controlling the electrical conductivity of langasite at elevated temperature and oxygen partial pressure. The potential impact of high levels of porosity and the use of an oxygen primary ion beam on the accuracy of some of the data is discussed. The gallium diffusivity, with activation energy of 3.13 eV, was found to be more than two orders of magnitude lower than that of oxygen. Surface exchange measurements enabled estimation of gallium loss at elevated temperatures and oxygen partial pressure; the level is not believed to be of major concern for resonator performance
Beschreibung:Date Completed 07.02.2005
Date Revised 17.09.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955