Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of aryldiazonium salts
The surface functionalization of ultrananocrystalline diamond (UNCD) thin films via the electrochemical reduction of aryl diazonium cations is described. The one-electron-transfer reaction leads to the formation of solution-based aryl radicals, which in turn react with the UNCD surface forming stabl...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 26 vom: 21. Dez., Seite 11450-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | The surface functionalization of ultrananocrystalline diamond (UNCD) thin films via the electrochemical reduction of aryl diazonium cations is described. The one-electron-transfer reaction leads to the formation of solution-based aryl radicals, which in turn react with the UNCD surface forming stable covalent C-C bonds. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), ac impedance spectroscopy, and contact angle measurements have been employed to characterize the organic overlayer and estimate the surface coverage. The grafting of 3,5-dichlorophenyl groups renders the UNCD surface hydrophobic, whereas the attachment of 4-aminophenyl groups makes the surface relatively hydrophilic. The surface coverage, estimated from the electrochemical and XPS measurements, is as high as 70% of a compact monolayer. The aminophenyl terminated surface was obtained by electrochemical reduction of the tethered nitrophenyl groups. This two-step approach yields a UNCD surface with functional moieties available for the potential covalent coupling of a wide variety of biomolecules (e.g., DNA and proteins) |
---|---|
Beschreibung: | Date Completed 03.02.2006 Date Revised 14.12.2004 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |