A multiple-substream unequal error-protection and error-concealment algorithm for SPIHT-coded video bitstreams

This paper presents a coordinated multiple-substream unequal error-protection and error-concealment algorithm for SPIHT-coded bitstreams transmitted over lossy channels. In the proposed scheme, we divide the video sequence corresponding to a group of pictures into two subsequences and independently...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 13(2004), 12 vom: 29. Dez., Seite 1547-53
1. Verfasser: Kim, Joohee (VerfasserIn)
Weitere Verfasser: Mersereau, Russell M, Altunbasak, Yucel
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Comparative Study Evaluation Study Journal Article Validation Study
Beschreibung
Zusammenfassung:This paper presents a coordinated multiple-substream unequal error-protection and error-concealment algorithm for SPIHT-coded bitstreams transmitted over lossy channels. In the proposed scheme, we divide the video sequence corresponding to a group of pictures into two subsequences and independently encode each subsequence using a three-dimensional SPIHT algorithm. We use two different partitioning schemes to generate the substreams, each of which offers some advantages under the appropriate channel condition. Each substream is protected by an FEC-based unequal error-protection algorithm, which assigns unequal forward error correction codes to each bit plane. Any information that is lost during the transmission for any substream is estimated at the receiver by using the correlation between the substreams and the smoothness of the video signal. Simulation results show that the proposed multiple-substream UEP algorithm is simple, fast, and robust in hostile network conditions, and that the proposed error-concealment algorithm can achieve 2-3-dB PSNR gain over the case when error concealment is not used at high packet-loss rates
Beschreibung:Date Completed 05.01.2005
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042