Eigenregions for image classification

For certain databases and classification tasks, analyzing images based region features instead of image features results in more accurate classifications. We introduce eigenregions, which are geometrical features that encompass area, location, and shape properties of an image region, even if the reg...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 12 vom: 13. Dez., Seite 1645-9
1. Verfasser: Fredembach, Clément (VerfasserIn)
Weitere Verfasser: Schröder, Michael, Süsstrunk, Sabine
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM152402012
003 DE-627
005 20231223061934.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0508.xml 
035 |a (DE-627)NLM152402012 
035 |a (NLM)15573825 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fredembach, Clément  |e verfasserin  |4 aut 
245 1 0 |a Eigenregions for image classification 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.01.2005 
500 |a Date Revised 02.12.2004 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a For certain databases and classification tasks, analyzing images based region features instead of image features results in more accurate classifications. We introduce eigenregions, which are geometrical features that encompass area, location, and shape properties of an image region, even if the region is spatially incoherent. Eigenregions are calculated using principal component analysis (PCA). On a database of 77,000 different regions obtained through the segmentation of 13,500 real-scene photographic images taken by nonprofessionals, eigenregions improved the detection of localized image classes by a noticeable amount. Additionally, eigenregions allow us to prove that the largest variance in natural image region geometry is due to its area and not to shape or position 
650 4 |a Journal Article 
700 1 |a Schröder, Michael  |e verfasserin  |4 aut 
700 1 |a Süsstrunk, Sabine  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 12 vom: 13. Dez., Seite 1645-9  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:12  |g day:13  |g month:12  |g pages:1645-9 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 12  |b 13  |c 12  |h 1645-9