A coarse-to-fine strategy for multiclass shape detection

Multiclass shape detection, in the sense of recognizing and localizing instances from multiple shape classes, is formulated as a two-step process in which local indexing primes global interpretation. During indexing a list of instantiations (shape identities and poses) is compiled, constrained only...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 12 vom: 13. Dez., Seite 1606-21
1. Verfasser: Amit, Yali (VerfasserIn)
Weitere Verfasser: Geman, Donald, Fan, Xiaodong
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM152401970
003 DE-627
005 20231223061934.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0508.xml 
035 |a (DE-627)NLM152401970 
035 |a (NLM)15573821 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Amit, Yali  |e verfasserin  |4 aut 
245 1 2 |a A coarse-to-fine strategy for multiclass shape detection 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.01.2005 
500 |a Date Revised 02.12.2004 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Multiclass shape detection, in the sense of recognizing and localizing instances from multiple shape classes, is formulated as a two-step process in which local indexing primes global interpretation. During indexing a list of instantiations (shape identities and poses) is compiled, constrained only by no missed detections at the expense of false positives. Global information, such as expected relationships among poses, is incorporated afterward to remove ambiguities. This division is motivated by computational efficiency. In addition, indexing itself is organized as a coarse-to-fine search simultaneously in class and pose. This search can be interpreted as successive approximations to likelihood ratio tests arising from a simple ("naive Bayes") statistical model for the edge maps extracted from the original images. The key to constructing efficient "hypothesis tests" for multiple classes and poses is local ORing; in particular, spread edges provide imprecise but common and locally invariant features. Natural tradeoffs then emerge between discrimination and the pattern of spreading. These are analyzed mathematically within the model-based framework and the whole procedure is illustrated by experiments in reading license plates 
650 4 |a Journal Article 
700 1 |a Geman, Donald  |e verfasserin  |4 aut 
700 1 |a Fan, Xiaodong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 26(2004), 12 vom: 13. Dez., Seite 1606-21  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:26  |g year:2004  |g number:12  |g day:13  |g month:12  |g pages:1606-21 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2004  |e 12  |b 13  |c 12  |h 1606-21