Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers

The growth kinetics and morphologies of self-assembled monolayers deposited by contact printing 7-octenyltrichlorosilane (OCT) and octadecyltrichlorosilane (OTS) on Si(100) were studied by ellipsometry and atomic force microscopy. We found that, for both OCT and OTS, full monolayers could be obtaine...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 25 vom: 07. Dez., Seite 10878-88
1. Verfasser: Harada, Yoshiko (VerfasserIn)
Weitere Verfasser: Girolami, Gregory S, Nuzzo, Ralph G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. 7-octenyltrichlorosilane Dimethylpolysiloxanes Membranes, Artificial Silanes Silicones octadecyltrichlorosilane 112-04-9 baysilon mehr... 63148-62-9 Silicon Z4152N8IUI
LEADER 01000naa a22002652 4500
001 NLM15235512X
003 DE-627
005 20231223061839.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0508.xml 
035 |a (DE-627)NLM15235512X 
035 |a (NLM)15568837 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Harada, Yoshiko  |e verfasserin  |4 aut 
245 1 0 |a Growth kinetics and morphology of self-assembled monolayers formed by contact printing 7-octenyltrichlorosilane and octadecyltrichlorosilane on Si(100) wafers 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.05.2006 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The growth kinetics and morphologies of self-assembled monolayers deposited by contact printing 7-octenyltrichlorosilane (OCT) and octadecyltrichlorosilane (OTS) on Si(100) were studied by ellipsometry and atomic force microscopy. We found that, for both OCT and OTS, full monolayers could be obtained at room temperature after printing times of 120-180 s; the printing-based monolayer assembly processes follow apparent Langmuir adsorption kinetics, with the measured film growth rates increasing both with the ambient humidity and with concentration of the ink used to load the stamp. At a dew point of 10 degrees C and an ink concentration (in toluene) of 50 mM, the observed film growth rate constant is 0.05 s(-)(1). When the printing was carried out at a lower ambient humidity (dew points of 1-3 degrees C), the measured rates of assembly were approximately a factor of 2 slower. Increasing the deposition temperature from 25 to 45 degrees C under these conditions increased the film growth rate only slightly. The morphology of the films depends on the identity of the ink. Uniform, high-coverage films could be obtained readily from the eight-carbon chain length adsorbate OCT, provided that the stamp was not overloaded with the ink; for high concentrations outside of the optimal range, the surface presented significant numbers of adsorbed particles ascribed, in part, to siloxane polymers formed by hydrolysis of the ink on the stamp before printing. In marked contrast, for the 18-carbon adsorbate OTS, the printed films always consisted of a mixture of a uniform monolayer plus adsorbed polysiloxane particles. The different film morphologies seen for OCT and OTS are proposed to result from the different transfer efficiencies of the organotrichlorosilane relative to polysiloxane hydrolysis products formed during the printing process. These transfer efficiencies exhibit sensitivities related to the permeation of the poly(dimethylsiloxane) (PDMS) stamp by the silane reagents. Short-chain inks such as OCT evidently permeate the PDMS stamp more deeply than longer-chain inks such as OTS. This difference, and the different diffusion rates of ink vs oligomeric silane hydrolysis products, determines the film morphology obtained by contact printing. The mass transfer dynamics of the process thus yield surface layers derived from varying quantities of siloxane oligomers, which subsequently transfer to the substrate along with unhydrolyzed silane adsorbate during the printing step. The structural evolution of the contact-printed films so obtained is strikingly different from that of SAMs prepared by immersion 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 7 |a 7-octenyltrichlorosilane  |2 NLM 
650 7 |a Dimethylpolysiloxanes  |2 NLM 
650 7 |a Membranes, Artificial  |2 NLM 
650 7 |a Silanes  |2 NLM 
650 7 |a Silicones  |2 NLM 
650 7 |a octadecyltrichlorosilane  |2 NLM 
650 7 |a 112-04-9  |2 NLM 
650 7 |a baysilon  |2 NLM 
650 7 |a 63148-62-9  |2 NLM 
650 7 |a Silicon  |2 NLM 
650 7 |a Z4152N8IUI  |2 NLM 
700 1 |a Girolami, Gregory S  |e verfasserin  |4 aut 
700 1 |a Nuzzo, Ralph G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 20(2004), 25 vom: 07. Dez., Seite 10878-88  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:20  |g year:2004  |g number:25  |g day:07  |g month:12  |g pages:10878-88 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 20  |j 2004  |e 25  |b 07  |c 12  |h 10878-88