Heterogeneity in styrene-butadiene latex films

Low-Tg styrene-butadiene (SB) latex films were investigated by noncontact atomic force microscopy and scanning electric potential microscopy, revealing a number of different morphologies and electric potential patterns across films cast from the same SB latex dispersions under the same conditions. S...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 24 vom: 23. Nov., Seite 10576-82
1. Verfasser: Santos, Juliane P (VerfasserIn)
Weitere Verfasser: Corpart, Pascale, Wong, Kenneth, Galembeck, Fernando
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Butadienes Latex Membranes, Artificial Styrene 44LJ2U959V
Beschreibung
Zusammenfassung:Low-Tg styrene-butadiene (SB) latex films were investigated by noncontact atomic force microscopy and scanning electric potential microscopy, revealing a number of different morphologies and electric potential patterns across films cast from the same SB latex dispersions under the same conditions. Surface leveling and charge dispersion throughout the films are, thus, restrained even at temperatures above Tg and the minimum film-formation temperature. An unprecedented electric pattern is observed, in which the particle cores are more positive than the contacting particle outer layers. Different packing patterns, including cubic and hexagonal arrays, coexist in neighboring areas. Zonal centrifugation of the SB latex in sucrose density gradient shows that particles cover a broad range of densities. Thus, film surface heterogeneity is at least partly due to particle heterogeneity. Fractal dimensions of topographic profiles are lower than those of the electric potential profiles, showing that charge mobility is much more restrained than polymer chain motion at the film surface and that it imposes a limit to the charged chain-ends motion
Beschreibung:Date Completed 24.04.2006
Date Revised 24.11.2016
published: Print
Citation Status MEDLINE
ISSN:1520-5827