In situ characterization of aluminum-containing mineral-microorganism aqueous suspensions using scanning transmission X-ray microscopy

In situ characterization of colloidal particles under hydrous conditions is one of the key requirements for understanding their state of aggregation and impact on the transport of pollutants in aqueous environments. Scanning transmission X-ray microscopy (STXM) is one of the few techniques that can...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 24 vom: 23. Nov., Seite 10361-6
1. Verfasser: Yoon, Tae Hyun (VerfasserIn)
Weitere Verfasser: Johnson, Stephen B, Benzerara, Karim, Doyle, Colin S, Tyliszczak, Tolek, Shuh, David K, Brown, Gordon E Jr
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Letter Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Aluminum Compounds Colloids Water 059QF0KO0R Aluminum CPD4NFA903
Beschreibung
Zusammenfassung:In situ characterization of colloidal particles under hydrous conditions is one of the key requirements for understanding their state of aggregation and impact on the transport of pollutants in aqueous environments. Scanning transmission X-ray microscopy (STXM) is one of the few techniques that can satisfy this need by providing element- and chemical-state-specific 2-D maps at a spatial resolution better than 50 nm using soft X-rays from synchrotron radiation wiggler or undulator sources tuned to the absorption edges of different elements. X-ray absorption near-edge structure (XANES) spectra can also be collected simultaneously at a similar spatial resolution and can provide phase identification in many cases. In this study, we report STXM images and XANES spectroscopy measurements at or above the Al K-edge (E = 1559.6 eV) of various Al-containing minerals and synthetic oxides [alpha-Al2O3 (corundum), gamma-Al2O3, gamma-AlOOH (boehmite), alpha-Al(OH)3 (bayerite), KAl2(AlSi3O10)(OH)2 (muscovite), (Al,Mg)8(Si4O10)4(OH)8.nH2O (montmorillonite), and Mg6Al2(OH)16CO3.4H2O (hydrotalcite)] and demonstrate the capability of this spectromicroscopic tool to identify different Al-containing mineral colloids in multiphase mixtures in aqueous solution. We also demonstrate that STXM imaging at or above the C K-edge (E = 284.2 eV) and Al K-edge can provide unique information on the interactions between bacteria and Al-containing nanoparticles in aqueous suspensions. STXM images of a mixture of Caulobacter crescentus and montmorillonite and corundum particles just above the C and Al K-edges show that the mineral particles and bacteria are closely associated in aggregates, which is likely due to the binding of bacteria to clay and corundum particles by extracellular polysaccharides
Beschreibung:Date Completed 24.04.2006
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827