Gain-phase margin analysis of dynamic fuzzy control systems

In this paper, we apply some effective methods, including the gain-phase margin tester, describing function and parameter plane, to predict the limit cycles of dynamic fuzzy control systems with adjustable parameters. Both continuous-time and sampled-data fuzzy control systems are considered. In gen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 5 vom: 01. Okt., Seite 2133-9
1. Verfasser: Perng, Jau-Woei (VerfasserIn)
Weitere Verfasser: Wu, Bing-Fei, Chin, Hung-I, Lee, Tsu-Tian
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Evaluation Study Letter Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM151737304
003 DE-627
005 20250205232153.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0506.xml 
035 |a (DE-627)NLM151737304 
035 |a (NLM)15503509 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Perng, Jau-Woei  |e verfasserin  |4 aut 
245 1 0 |a Gain-phase margin analysis of dynamic fuzzy control systems 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.11.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we apply some effective methods, including the gain-phase margin tester, describing function and parameter plane, to predict the limit cycles of dynamic fuzzy control systems with adjustable parameters. Both continuous-time and sampled-data fuzzy control systems are considered. In general, fuzzy control systems are nonlinear. By use of the classical method of describing functions, the dynamic fuzzy controller may be linearized first. According to the stability equations and parameter plane methods, the stability of the equivalent linearized system with adjustable parameters is then analyzed. In addition, a simple approach is also proposed to determine the gain margin and phase margin which limit cycles can occur for robustness. Two examples of continuous-time fuzzy control systems with and without nonlinearity are presented to demonstrate the design procedure. Finally, this approach is also extended to a sampled-data fuzzy control system 
650 4 |a Evaluation Study 
650 4 |a Letter 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wu, Bing-Fei  |e verfasserin  |4 aut 
700 1 |a Chin, Hung-I  |e verfasserin  |4 aut 
700 1 |a Lee, Tsu-Tian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 34(2004), 5 vom: 01. Okt., Seite 2133-9  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:34  |g year:2004  |g number:5  |g day:01  |g month:10  |g pages:2133-9 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2004  |e 5  |b 01  |c 10  |h 2133-9