Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)

Type-2 fuzzy logic system (FLS) cascaded with neural network, type-2 fuzzy neural network (T2FNN), is presented in this paper to handle uncertainty with dynamical optimal learning. A T2FNN consists of a type-2 fuzzy linguistic process as the antecedent part, and the two-layer interval neural network...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 3 vom: 20. Juni, Seite 1462-77
1. Verfasser: Wang, Chi-Hsu (VerfasserIn)
Weitere Verfasser: Cheng, Chun-Sheng, Lee, Tsu-Tian
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Validation Study
LEADER 01000caa a22002652 4500
001 NLM151563519
003 DE-627
005 20250205224509.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0505.xml 
035 |a (DE-627)NLM151563519 
035 |a (NLM)15484917 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Chi-Hsu  |e verfasserin  |4 aut 
245 1 0 |a Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 16.11.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a CommentIn: IEEE Trans Syst Man Cybern B Cybern. 2006 Oct;36(5):1206-9. doi: 10.1109/tcsi.2006.873184. - PMID 17036826 
500 |a Citation Status MEDLINE 
520 |a Type-2 fuzzy logic system (FLS) cascaded with neural network, type-2 fuzzy neural network (T2FNN), is presented in this paper to handle uncertainty with dynamical optimal learning. A T2FNN consists of a type-2 fuzzy linguistic process as the antecedent part, and the two-layer interval neural network as the consequent part. A general T2FNN is computational-intensive due to the complexity of type 2 to type 1 reduction. Therefore, the interval T2FNN is adopted in this paper to simplify the computational process. The dynamical optimal training algorithm for the two-layer consequent part of interval T2FNN is first developed. The stable and optimal left and right learning rates for the interval neural network, in the sense of maximum error reduction, can be derived for each iteration in the training process (back propagation). It can also be shown both learning rates cannot be both negative. Further, due to variation of the initial MF parameters, i.e., the spread level of uncertain means or deviations of interval Gaussian MFs, the performance of back propagation training process may be affected. To achieve better total performance, a genetic algorithm (GA) is designed to search optimal spread rate for uncertain means and optimal learning for the antecedent part. Several examples are fully illustrated. Excellent results are obtained for the truck backing-up control and the identification of nonlinear system, which yield more improved performance than those using type-1 FNN 
650 4 |a Comparative Study 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Validation Study 
700 1 |a Cheng, Chun-Sheng  |e verfasserin  |4 aut 
700 1 |a Lee, Tsu-Tian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 34(2004), 3 vom: 20. Juni, Seite 1462-77  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:34  |g year:2004  |g number:3  |g day:20  |g month:06  |g pages:1462-77 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2004  |e 3  |b 20  |c 06  |h 1462-77