Facial action recognition for facial expression analysis from static face images

Automatic recognition of facial gestures (i.e., facial muscle activity) is rapidly becoming an area of intense interest in the research field of machine vision. In this paper, we present an automated system that we developed to recognize facial gestures in static, frontal- and/or profile-view color...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society. - 1997. - 34(2004), 3 vom: 20. Juni, Seite 1449-61
1. Verfasser: Pantic, Maja (VerfasserIn)
Weitere Verfasser: Rothkrantz, Leon J M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society
Schlagworte:Clinical Trial Journal Article Research Support, Non-U.S. Gov't Validation Study
LEADER 01000caa a22002652 4500
001 NLM151563500
003 DE-627
005 20250205224508.0
007 tu
008 231223s2004 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0505.xml 
035 |a (DE-627)NLM151563500 
035 |a (NLM)15484916 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pantic, Maja  |e verfasserin  |4 aut 
245 1 0 |a Facial action recognition for facial expression analysis from static face images 
264 1 |c 2004 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 16.11.2004 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Automatic recognition of facial gestures (i.e., facial muscle activity) is rapidly becoming an area of intense interest in the research field of machine vision. In this paper, we present an automated system that we developed to recognize facial gestures in static, frontal- and/or profile-view color face images. A multidetector approach to facial feature localization is utilized to spatially sample the profile contour and the contours of the facial components such as the eyes and the mouth. From the extracted contours of the facial features, we extract ten profile-contour fiducial points and 19 fiducial points of the contours of the facial components. Based on these, 32 individual facial muscle actions (AUs) occurring alone or in combination are recognized using rule-based reasoning. With each scored AU, the utilized algorithm associates a factor denoting the certainty with which the pertinent AU has been scored. A recognition rate of 86% is achieved 
650 4 |a Clinical Trial 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Validation Study 
700 1 |a Rothkrantz, Leon J M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society  |d 1997  |g 34(2004), 3 vom: 20. Juni, Seite 1449-61  |w (DE-627)NLM098252887  |x 1083-4419  |7 nnns 
773 1 8 |g volume:34  |g year:2004  |g number:3  |g day:20  |g month:06  |g pages:1449-61 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 34  |j 2004  |e 3  |b 20  |c 06  |h 1449-61