|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM151561877 |
003 |
DE-627 |
005 |
20231223060210.0 |
007 |
tu |
008 |
231223s2004 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0505.xml
|
035 |
|
|
|a (DE-627)NLM151561877
|
035 |
|
|
|a (NLM)15484742
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Sohn, J H
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Evaluation of a novel wind tunnel for the measurement of the kinetics of odour emissions from piggery effluent
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.12.2004
|
500 |
|
|
|a Date Revised 24.11.2016
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A novel laboratory wind tunnel, with the capability to control factors such as air flow-rate, was developed to measure the kinetics of odour emissions from liquid effluent. The tunnel allows the emission of odours and other volatiles under an atmospheric transport system similar to ambient conditions. Sensors for wind speed, temperature and humidity were installed and calibrated. To calibrate the wind tunnel, trials were performed to determine the gas recovery efficiency under different air flow-rates (ranging from 0.001 to 0.028m3/s) and gas supply rates (ranging from 2.5 to 10.0 L/min) using a standard CO gas mixture. The results have shown gas recovery efficiencies ranging from 61.7 to 106.8%, while the average result from the trials was 81.14%. From statistical analysis, it was observed that the highest, most reliable gas recovery efficiency of the tunnel was 88.9%. The values of air flow-rate and gas supply rate corresponding to the highest gas recovery efficiency were 0.028 m3/s and 10.0 L/min respectively. This study suggested that the wind tunnel would provide precise estimates of odour emission rate. However, the wind tunnel needs to be calibrated to compensate for errors caused by different air flow-rates
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Air Pollutants
|2 NLM
|
700 |
1 |
|
|a Smith, R
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yoong, E
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hudson, N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, T I
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Water science and technology : a journal of the International Association on Water Pollution Research
|d 1986
|g 50(2004), 4 vom: 08., Seite 49-55
|w (DE-627)NLM098149431
|x 0273-1223
|7 nnns
|
773 |
1 |
8 |
|g volume:50
|g year:2004
|g number:4
|g day:08
|g pages:49-55
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 50
|j 2004
|e 4
|b 08
|h 49-55
|