Nitrate reductase regulation in tomato roots by exogenous nitrate : a possible role in tolerance to long-term root anoxia

The mechanism of nitrate reductase (NR) regulation under long-term anoxia in roots of whole plants and the putative role of nitrate in anoxia tolerance have been addressed. NR activity in tomato roots increased significantly after 24 h of anaerobiosis and increased further by 48 h, with a concomitan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 55(2004), 408 vom: 15. Dez., Seite 2625-34
1. Verfasser: Allègre, Adeline (VerfasserIn)
Weitere Verfasser: Silvestre, Jérôme, Morard, Philippe, Kallerhoff, Jean, Pinelli, Eric
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Nitrates Nitrites Nitrate Reductases EC 1.7.- Nitrate Reductase EC 1.7.99.4 Oxygen S88TT14065
Beschreibung
Zusammenfassung:The mechanism of nitrate reductase (NR) regulation under long-term anoxia in roots of whole plants and the putative role of nitrate in anoxia tolerance have been addressed. NR activity in tomato roots increased significantly after 24 h of anaerobiosis and increased further by 48 h, with a concomitant release of nitrite into the culture medium. Anoxia promoted NR activation through dissociation of the 14-3-3 protein inhibitor and NR dephosphorylation. After 24 h of anoxia, the total amount of NR increased slightly up to 48 h. However, NR-mRNA levels remained constant between 0 h and 24 h of root anoxia and decreased after 48 h. This is probably due to the inhibition of NR degradation and the accumulation of its native form. NR was slightly dephosphorylated in the absence of oxygen and nitrate. Under anoxia, NR dephosphorylation was modulated by nitrate-controlled NR activity. In addition, the presence of nitrate prevents anoxic symptoms on leaves and delays wilting by 48 h during root anoxia. In the absence of nitrate, plants withered within 24 h, as they did with tungstate treatment, an inhibitor of NR activity. Thus, anoxia tolerance of tomato roots could be enhanced by nitrate reduction
Beschreibung:Date Completed 03.02.2005
Date Revised 07.12.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:0022-0957