The early light-inducible protein (ELIP) gene is expressed during the chloroplast-to-chromoplast transition in ripening tomato fruit
Chloroplast-to-chromoplast transitions during fruit ripening require massive transformation of the plastid internal membrane structure as the photosynthetic apparatus is disassembled. Early Light-Inducible Proteins (ELIPs) are known to accumulate in chloroplasts during thylakoid biogenesis and under...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 55(2004), 408 vom: 15. Dez., Seite 2541-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2004
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Arabidopsis Proteins ELIP protein, Arabidopsis Plant Proteins RNA, Messenger RNA, Plant |
Zusammenfassung: | Chloroplast-to-chromoplast transitions during fruit ripening require massive transformation of the plastid internal membrane structure as the photosynthetic apparatus is disassembled. Early Light-Inducible Proteins (ELIPs) are known to accumulate in chloroplasts during thylakoid biogenesis and under stressful conditions. To determine if ELIP may also play a role in thylakoid disassembly during the chloroplast-to-chromoplast transition, ELIP mRNA expression was measured in tomato, Lycopersicon esculentum Mill. cv. Rutgers. An EST clone was identified in the Tomato Genome Project/Solanaceae Genomics Network database that has high sequence similarity with the amino acid sequence of Arabidopsis ELIP1 and ELIP2. It has complete identity in the two conserved regions of the protein. Genomic Southern blots indicate that the gene is a single copy in tomato. The genomic sequence shows the three-exon structure typical of ELIP sequences from other species. mRNA for this gene is barely detectable on northern blots from etiolated seedlings, but transiently accumulates to high levels 2 h after transfer to the light. Greenhouse-grown tomatoes were used to measure ELIP mRNA accumulation during fruit development and ripening. Tomato ELIP mRNA is detectable in all stages of fruit ripening, but is most abundant in the breaker/turning stage of development. A survey of tomato EST databases revealed that ELIP cDNA is also relatively abundant in developing flowers, which contain yellow chromoplasts. Combined, these results suggest that ELIP may play a newly-recognized role in the chloroplast-to-chromoplast transition process |
---|---|
Beschreibung: | Date Completed 03.02.2005 Date Revised 07.12.2022 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1460-2431 |