Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures

Copyright 2004 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 21 vom: 12. Okt., Seite 9276-81
1. Verfasser: Wallace, Jean Marie (VerfasserIn)
Weitere Verfasser: Dening, Brett M, Eden, Kristin B, Stroud, Rhonda M, Long, Jeffrey W, Rolison, Debra R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. Colloids Silver 3M4G523W1G Silicon Dioxide 7631-86-9 Cytochromes c 9007-43-6
Beschreibung
Zusammenfassung:Copyright 2004 American Chemical Society
We recently discovered that self-organized superstructures of the heme protein cytochrome c (cyt. c) are nucleated in buffer by gold nanoparticles. The protein molecules within the superstructure survive both silica sol-gel encapsulation and drying from supercritical carbon dioxide to form air-filled biocomposite aerogels that exhibit gas-phase binding activity for nitric oxide. In this investigation, we report that viable proteins are present in biocomposite aerogels when the nucleating metal nanoparticle is silver rather than gold. Silver colloids were synthesized via reduction of an aqueous solution of Ag+ using either citrate or borohydride reductants. As determined by transmission electron microscopy and UV-visible absorption spectroscopy, the silver nanoparticles vary in size and shape depending on the synthetic route, which affects the fraction of cyt. c that survives the processing necessary to form a biocomposite aerogel. Silver colloids synthesized via the citrate preparation are polydisperse, with sizes ranging from 1 to 100 nm, and lead to low cyt. c viability in the dried bioaerogels (approximately 15%). Protein superstructures nucleated at approximately 10-nm Ag colloids prepared via the borohydride route, including citrate stabilization of the borohydride-reduced metal, retain significant protein viability within the bioaerogels (approximately 45%)
Beschreibung:Date Completed 25.04.2006
Date Revised 24.11.2016
published: Print
Citation Status MEDLINE
ISSN:1520-5827