Molecular modeling of alkyl monolayers on the Si(100)-2 x 1 surface

Copyright 2004 American Chemical Society

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 20(2004), 21 vom: 12. Okt., Seite 9108-13
1. Verfasser: Lee, Michael V (VerfasserIn)
Weitere Verfasser: Guo, Dawei, Linford, Matthew R, Zuilhof, Han
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Alkenes Alkynes Carbon 7440-44-0 Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:Copyright 2004 American Chemical Society
Molecular modeling was used to simulate various surfaces derived from the addition of 1-alkenes and 1-alkynes to Si=Si dimers on the Si(100)-2 x 1 surface. The primary aim was to better understand the interactions between adsorbates on the surface and distortions of the underlying silicon crystal due to functionalization. Random addition of ethylene and acetylene was used to determine how the addition of an adduct molecule affects subsequent additions for coverages up to one molecule per silicon dimer, that is, 100% coverage. Randomization subdues the effect that the relative positions of the adsorbates have on the enthalpy of the system. For ethylene and acetylene, the enthalpy of reaction changes less than 3 and 5 kcal/mol, respectively, from the first reacted species up to 100% coverage. As a result, a (near-)complete coverage is predicted, which is in line with experimental data. When 1-alkenes and 1-alkynes add by [2 + 2] addition, the hydrocarbon chains interact differently depending on the direction they project from the surface. These effects were investigated for four-carbon chains: 1-butene and 1-butyne. As expected, the chains that would otherwise intersect bend to avoid each other, raising the enthalpy of the system. For alkyl chains longer than four carbons, the chains are able to reorient themselves in a favorable manner, thus, resulting in a steady reduction in reaction enthalpy of about 2 kcal/mol for each additional methylene unit
Beschreibung:Date Completed 25.04.2006
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827