VC-dimension of exterior visibility

In this paper, we study the Vapnik-Chervonenkis (VC)-dimension of set systems arising in 2D polygonal and 3D polyhedral configurations where a subset consists of all points visible from one camera. In the past, it has been shown that the VC-dimension of planar visibility systems is bounded by 23 if...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 26(2004), 5 vom: 27. Mai, Seite 667-71
1. Verfasser: Isler, Volkan (VerfasserIn)
Weitere Verfasser: Kannan, Sampath, Daniilidis, Kostas, Valtr, Pavel
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Comparative Study Evaluation Study Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:In this paper, we study the Vapnik-Chervonenkis (VC)-dimension of set systems arising in 2D polygonal and 3D polyhedral configurations where a subset consists of all points visible from one camera. In the past, it has been shown that the VC-dimension of planar visibility systems is bounded by 23 if the cameras are allowed to be anywhere inside a polygon without holes. Here, we consider the case of exterior visibility, where the cameras lie on a constrained area outside the polygon and have to observe the entire boundary. We present results for the cases of cameras lying on a circle containing a polygon (VC-dimension= 2) or lying outside the convex hull of a polygon (VC-dimension= 5). The main result of this paper concerns the 3D case: We prove that the VC-dimension is unbounded if the cameras lie on a sphere containing the polyhedron, hence the term exterior visibility
Beschreibung:Date Completed 26.10.2004
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1939-3539