Increased sucrose level and altered nitrogen metabolism in Arabidopsis thaliana transgenic plants expressing antisense chloroplastic fructose-1,6-bisphosphatase

The pea chloroplastic fructose-1,6-bisphosphatase (FBPase) antisense construct reduced the endogenous level of expression of the corresponding Arabidopsis thaliana gene. The reduction of foliar FBPase activity in the transformants T(2) and T(3) generation ranged from 20% to 42%, and correlated with...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 55(2004), 408 vom: 22. Dez., Seite 2495-503
1. Verfasser: Sahrawy, Mariam (VerfasserIn)
Weitere Verfasser: Avila, Concepción, Chueca, Ana, Cánovas, Francisco M, López-Gorgé, Julio
Format: Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antisense Elements (Genetics) Sucrose 57-50-1 Nitrate Reductases EC 1.7.- Nitrate Reductase EC 1.7.99.4 Fructose-Bisphosphatase mehr... EC 3.1.3.11 Glutamate-Ammonia Ligase EC 6.3.1.2 Nitrogen N762921K75
Beschreibung
Zusammenfassung:The pea chloroplastic fructose-1,6-bisphosphatase (FBPase) antisense construct reduced the endogenous level of expression of the corresponding Arabidopsis thaliana gene. The reduction of foliar FBPase activity in the transformants T(2) and T(3) generation ranged from 20% to 42%, and correlated with lower levels of FBPase protein. FBPase antisense plants displayed different phenotypes with a clear increase in leaf fresh weight. Measurements of photosynthesis revealed a higher carbon-assimilation rate. Decreased FBPase activity boosted the foliar carbohydrate contents, with a shift in the sucrose:starch ratio, which reached a maximum of 0.99 when the activity loss was 41%. Nitrate reductase activity decreased simultaneously with an increase in glutamine synthetase activity, which could be explained in terms of ammonium assimilation regulation by sugar content. These results suggest the role of FBPase as a key enzyme in CO(2) assimilation, and also in co-ordinating carbon and nitrogen metabolism
Beschreibung:Date Completed 03.02.2005
Date Revised 09.01.2024
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431